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A technical summary of this project is contained in the accompanying presentation materials.
This work continues our very successful effort in studying the physics and computational aspects
of propagation of atmospheric light strings and has received broad exposure amongst academic,
industry and DOD communities. Potential applications abound for light strings and the RF
electromagnetic pulses emitted from plasma channels generated by these light strings. We carried
out some simulations for Ionatron in Tucson in support of their high power femtosecond pulse
propagation experiments. We were able to predict the phenomenon of femtosecond light string
self-healing on collision with optically opaque scatterers. A fully microscopic theory of
incoherent THz emission from plasma channels left in the wake of femtosecond light strings has
just been submitted to Physical Review Letters. Our UPPE vector ultra-short pulse propagator
was instrumental in identifying a new class of nonlinear X-waves that propagate in condensed
media such as water. Significant progress has already been made in the study of light
propagation in high-index contrast and Photonic Bragg nanoscale optical waveguide structures.
The accompanying materials present our achievements over the past year on shaping the
supercontinuum using sub-micron tapered fiber cores. We have succeeded in implementing a
second order accurate 3D vector Maxwell AMR algorithm that exploits the Yee-algorithm within
the Finite Difference Time Domain (FDTD) approach. The latter is being parallelized on our
newly acquired SGI Altix 32-CPU shared memory supercomputer. We propose to parallelize
this code across our new 42-CPU Opteron cluster when this system is stable. This combined
shared and distributed memory supercomputing system was acquired under the DURIP grant
(“Scalable Shared Memory Supercomputer Replacement for DOD Research”, AFOSR FA9550-
04-1-0355).

A number of papers have been published in the literature and others are submitted or in
preparation. These are referenced in the accompanying presentation materials. An invited paper
on Computational Nanophotonics was presented at the international conferences “Photonics
Europe”, held in Strasbourg, France from April 26-30, 2004 and, at the international ETOS
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Workshop held in Cork, Ireland from July 26-29, 2004.

The project supported three postdoctoral fellow positions and 3 graduate student positions at
Arizona.
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Self-healing femtosecond light filaments

M. Kolesik!? and J.V. Moloney!s?
10Optical Sciences Center, University of Arizona and
2ACMS, University of Arizona

A recent experiment (Courvoisier et al., Appl. Phys. Lett. 83(2003)213.) indi-
cated that filaments created in femtosecond high-power pulses propagating in
air are surprisingly robust when interacting with microscopic water droplets.
In the present paper, the dynamics of the filament-droplet interaction is mod-
eled numerically. Our simulation results provide further insight into the in-
terplay between the filament’s core and the wide transverse pedestal of the
pulse. It is shown that the robustness of the filament comes from the trans-
verse low-intensity pedestal that controls the formation of the central hot spot.
Implications for penetration of wide, high-power beams through obscurants are

discussed.
© 2003 Optical Society of America

OCIS codes: 320.2250, 320.5550, 190.5530, 260.5950, 010.1300

Filament formation in ultrashort, high-power pulses
continues to attract interest ever since its first experi-
mental observations almost a decade ago.!? While there
is a reasonably good understanding of the processes that
control the single-filament dynamics,34 the very high-
power regime,? characterized by multiple filaments gen-
erated simultaneously,® is much less understood. It has
been predicted by computer simulations that in a wide
beam, when multiple filaments are formed simultane-
ously, the low-intensity background of the pulse plays
a crucial role.” It serves as an energy reservoir for the
emerging and decaying filaments and thus enables the
long-distance propagation of the resulting “composite”
pulse. Clearly, to understand the dynamics of Tera-Watt
scale light pulses, that can easily generated hundreds
of filaments, we need to uncover how exactly the fila-
ment core (center) and the low-intensity background af-
fect each other during propagation. This is particularly
important for propagation through obscurants, such as
clouds.

A recent experiment by Courvoisier et al.® strongly in-
dicated that a femtosecond filament is extremely robust
when it interacts with microscopic water droplets. They
showed that filaments with sufficient energy can survive
head-on collisions with droplets as large as 95um in di-
ameter. This ability to recover from the collision was
attributed to energy transfer from the pulse’s off-axis re-
gions. Thus, the experiment presents another strong sup-
port for the spatial replenishment scenario put forward
first by Mlejnek et al.3

The aim of this letter is to check the conclusions of
Ref® with computer simulations, and to obtain further
insight into the interaction between droplets and fila-
ments. Our results are in a good agreement with the
experiment by Courvoisier et al. Moreover, we show that
the filament robustness has little to do with its alleged
quasi-solitonic character. It seems, in fact, that the re-
covery after the collision hardly depends on the filament

structure at all. Rather, it is the surrounding low-energy
background of the pulse that replenishes the on-axis re-
gion with energy and continuously builds the central hot
spot quite independently of what happened to the fila-
ment core during the collision with the droplet. One
can say that the short-scale evolution of the filament’s
center is encoded, or “programed,” in the low-intensity
surrounding. Our simulations also indicate that the sec-
ondary energy losses due to disturbed waveform in the
center of the filament, which one would expect to result
in strong radiation of the energy outward, are quite small.
It seems that most of the diffracting field is re-captured
within the pulse and continues to contribute to the dy-
namic replenishment in the later propagation stages.

The femtosecond pulse propagation model used here is
based on a simplified, scalar version the Unidirectional
Pulse Propagation Equation.® The linear air susceptibil-
ity, needed for the exact linear propagator, is constructed
from the refractive index formula by Peck and Reed,!®
and the nonlinear response model used is the same as
in Ref.® Thus, our model includes effects of diffraction,
self-focusing, stimulated Raman scattering, plasma gen-
eration and interaction of light with the plasma. As
an initial condition, we use a loosely collimated (f=5m)
Gaussian pulse (w = 3mm) of 140fs duration with energy
of 7mJ. The unobstructed pulse creates a light filament
that propagates over more than three meters, as in the
experiment.

The experiment indicates that only the geometric
cross-section of the droplet plays a role, while its op-
tical properties are unimportant. Thus, the droplet can
be modeled simply as a screen, or obstacle of appropriate
size in the simulation. We choose our model droplet to be
represented by a screen with soft edges. Here we present
results for the screen radius of 50um, corresponding to
the largest droplets studied in.®

One intriguing question raised by the experiment is
whether or not it matters at what distance, after the fila-
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Fig. 1. Maximal energy fluence as a function of the propa-
gation distance for the free propagating pulse and for two
pulses hitting droplets. The filament dynamics remains
qualitatively the same as in the unperturbed case. For
some distance after the droplets, the fluence behaviors
are extremely similar. That suggests that the off-axis
pulse content controls the central hot spot.

mentation onset, the filament hits the droplet. Some re-
searchers in the field believe that there is a rather delicate
balance between self-focusing and de-focusing forces that
holds the filament together and produces a soliton-like
propagating structure. We believe that the filament goes
through different stages during its replenishment cycles.3
In the first case, the filament should be very sensitive
to any perturbations in its central region. In the second
case, it is conceivable that droplets encountered at differ-
ent stages of its evolution could cause different degrees of
“damage” to the filament and affect differently its ability
to propagate. We have therefore studied droplets placed
at various distances chosen to intercept different dynamic
states of the pulse.

A quantity that is relatively easy to measure in exper-
" iments is the fluence, i.e. the total energy density reach-
ing a target at a certain spot. We compare the maximal
fluences recorded over several meters in the free pulse
and in pulses that encountered droplets at z = 0.4m and
z =1.0m (Fig. 1). From the point of view of the filament
dynamics, these are two qualitatively different locations.
In the first case, the filament just enters its first replen-
ishment cycle, and has a much simpler waveform than
at z = 1.0m, where it re-focuses during its second re-
plenishment cycle. Figure 1 shows that in both cases the
filament survives, and the effect of the droplet on the fil-
ament propagation distance is minimal. Moreover, just
- & 10cm after the droplet, there is a striking similarity
between the fluence behaviors for next =~ 1m. That sug-
gests that the on-axis pulse shapes depend more on the
content of the off-axis surroundings than on the central
portion of the filament at an earlier propagation distance!

Similar to maximal energy fluences, the plasma genera-
tion is only slightly affected by collision with the droplet.

E C
= le+15
2 E
& -
c C
@
'g le+14 |- i
& s i
T‘g. - — free propagation %, |
- 1e+13 ---- dropletat1.om
[] E ----- droplet at 0.4m
k=
test2t—t o L L
0 1 2 3

propagation distance [m]

Fig. 2. The overall plasma generation remains almost un-
affected by collisions with droplets, independently of the
pulse’s evolution stage when it hits the droplet. Under
given conditions, the plasma generation reflects most of
the energy losses of the pulse.

This is demonstrated in Fig. 2: The total number of free
electrons generated per unit length remains practically
the same in perturbed filaments. Significant differences
only occur in the final stages of the propagation where
they reflect accumulated deviations between their gener-
ating optical fields.

Having seen the robustness of the filament in exper-
imental results, and corroborating it in simulations, we
should ask the question of how much the droplet actually
“damages” the filament. It should be noted that our large
droplet size is comparable with the dimension of the fila-
ment’s core, and the collision “annihilates” a significant
portion of the filament itself. However, the important
point is that the total energy is much less affected. This
is shown in Fig. 3 where we plot total energies of the free
pulse and for the two droplet-hitting pulses. Very much
like in the experiment, the immediate energy loss is only
several percent of the total.

An important observation here is that the subsequent
energy loss rates remain almost the same in the free and
perturbed pulses. If there was a significant portion of
energy radiated out, it would manifest itself as an energy
decrease compared to the free pulse. (Note that we use
absorbing boundary to keep our computational domain
reasonably small). Thus, it seems that the diffraction
rings, or ripples created by the obstacle do not propa-
gate outside of the beam, but are captured by the self-
focusing action of the rest of the pulse. At any rate, that
portion of the energy that is radiated out is probably sig-
nificantly smaller than the immediate energy loss due to
the collision as it is not discernible in the simulation.

One could expect that as a result of taking away the fil-
ament’s core, the self-focusing force that holds the whole
structure together diminishes, and diffraction should pre-
vail. However, as it is shown in Fig. 4, the hole carved
in the filament core by the droplet closes very quickly.
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Fig. 3. Total optical field energy within the computa-
tional domain. The immediate energy lost in the collision
with the droplet constitutes only several percent of the
total. Overall, energy loss rates of the free-propagating
and perturbed filaments are almost the same. That indi-
cates that the secondary induced energy losses (diffrac-
tion) are negligible.
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Fig. 4. Energy fluence with and without the droplet at
two close propagation distances. The “hole” in the pulse
carved out by the droplet is shown in the dotted curve.
Diffraction together with the absence of the de-focusing
effect of plasma in the on-axis region causes fast “healing”
of the hole. Shortly after collision, the perturbed filament
exhibits higher on-axis fluence than the free-propagating
filament. Very little “ripple effect” is visible.

Just 10cm after the droplet, the on-axis concentration
of energy is stronger than in the the free-propagating
pulse. This fast healing of the hole after the droplet is
due to the combined action of diffraction and expulsion
of the light from the off-axis region where the plasma is
still generated. Another important fact is that there is
almost no “ripple effect” visible. Comparing transverse
fluence profiles 10cm after the droplet, it is difficult to
say which belongs to the free-propagating pulse. This,

we speculate, is due to both the soft edge of the obstacle
as well as due to non-linear capture of the outgoing light.

The above observations, though obtained only for a
single filament in a radially symmetric simulation have
important implications for high-power pulses with mul-
tiple filaments that interact with obscurants. The fila-
ments can overcome collisions with droplets due solely to
the low-intensity background. But if there is sufficient
energy in the latter, then such characteristics as attained
intensities, energy fluences, and plasma generation effi-
ciency are largely insensitive to perturbations. Our sim-
ulations even indicate that the secondary energy losses
due to diffraction are small. We have also shown that
this robustness is almost entirely provided by the low--
intensity background, while the structure of the central
core of the filament is not important. These findings fur-
ther strengthens the dynamical replenishment scenario,
and together with the fine experiment of Courvoisier et
al. exclude any purely self-guiding model.

The difficult question is whether the filament ro-
bustness implicates robustness of the whole pulse in
the multiple-filament regime. It is clear that the low-
intensity background cannot be treated as linear: In a
wide beam, some of the light scattered by the droplets
may be recaptured. It will be important to under-
stand the interplay between the filaments and their low-
intensity background.

This work was supported by Air Force Office of Scien-
tific Research under contract F49620-03-1-0194. Authors
would like to thank Ewan Wright for helpful discussions.
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Simulation of femtosecond pulse propagation in sub-micron diameter tapered fibers
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Ultrashort pulse propagation and supercontinuum generation in tapered and microstructured
optical fibers is usually simulated using the corrected nonlinear Schrédinger equation. One of the
underlying approximations is that of wavelength-independent effective area or, equivalently, constant
nonlinear coefficient 4. In very thin waveguide structures with strong light confinement the validity
of such an approximation comes into question. In this paper we present an improved model in
which all modal properties are fully taken into account as function of the wavelength. We use
comparative numerical simulation to identify certain regimes in which an improved model is needed

for quantitatively correct results.

PACS numbers:

1. INTRODUCTION

Recently, novel optical fiber structures continue to
attract much interest. In particular, photonic crystal,
micro-structured [1, 2], and tapered [3] optical fibers
promise a wide range of applications and are therefore
studied intensively. An important application of these
waveguides is in the field of supercontinuum, or white-
light generation [2-8].

Numerical simulation of ultrashort light pulses in
micro-structured and tapered fibers is usually based on
the corrected Nonlinear Schrédinger Equation (NLS)
(6, 9, 10]. In the plethora of the NLS applications, its
corrected form used in fibers is probably the most clean
and realistic model. Though several approximations are
necessary to derive and justify this equation, in the con-
text of optical fibers the neglected effects are usually very
small.

The corrected NLS has been also used to gain in-
sights into the dynamics of supercontinuum generation
in micro-structured and tapered fibers with diameters as
small as two microns, and provided results in good qual-
itative agreement with experiments [9, 10].

Recently, we pointed out that even thinner, sub-
micron tapered fibers should be excellent supercontin-
uum sources [? . However, with the waveguide diameter
comparable to the wavelength, the modal electromag-
netic fields, the effective mode area and, consequently,
the nonlinear coefficient of the fiber all exhibit an ap-
preciable wavelength dependence. In the corrected NLS,
the nonlinear coefficient is taken constant. The validity
of this approximation comes into question, especially for
femtosecond pulses that produce supercontinuum spec-
tra sometimes spanning more than an octave in the fre-
quency domain.

It is the goal of this paper to clarify whether or not the
corrected NLS can be reliably applied even to very thin
tapers or sub-micron core micro-structured fibers. We
find that in general the corrected NLS will provide results
that are qualitatively correct. ‘In most cases that the
corrected NLS solutions deviate from a more complete

model the differences are too small to be significant in
the qualitative comparison with experimental measure-
ments. However, we demonstrate that there are certain
regimes that require a more sophisticated propagation
model for semi-quantitative simulations. If the rapidly
improving experimental techniques for measuring the su-
percontinuum pulses allow quantitative comparison with
simulations, and we believe that will be in a near future,
the improved propagation model will be required in many
instances.

II. SUPERCONTINUUM GENERATION IN
TAPERED AND MICRO-STRUCTURED FIBERS

Both micro-structured and tapered silica fibers have
been shown to be promising white-light sources. They
allow the produce supercontinuum spectra often span-
ning more than an octave at relatively low powers. How-
ever, optimizing the output for practical applications re-
mains a problem [7, 8]. In general, the desired spectral
properties are large width, possibly spanning an octave
in the frequency domain, absence of deep, wide spectral
gaps and smooth, flat spectral intensity. Simple spectral
phase is also important for pulse shaping. Unfortunately,
the spectra obtained from tapered and micro-structured
fibers do not usually exhibit all these properties. Clearly,
detailed understanding of the underlying processes, in-
cluding the role of noise, is important.

There are three distinct stages of the supercontinuum
generation in tapered and micro-structured fibers. These
evolution stages, with smooth cross-overs between them,
have been identified in several computer simulations, in
good qualitative agreement with experiments. We refer
the reader to Refs. [6, 9, 10] for details, and summarize
their findings together with our simulational observations
next.

First, the self-phase modulation is the prevailing non-
linear effect that controls the initial evolution of the
pulse. In the time domain, the pulse becomes steeper,
while its spectrum broadens in a nearly symmetrical fash-




ion. During this initial phase, the spectral broadening is
relatively slow and the spectral intensity exhibits charac-
teristic undulation as a function of frequency.

The second stage is characterized by fast changes in
both spectral and time domains. The spectral width
grows extremely rapidly over propagation distances of
the order of millimeters to centimeters, depending on
the peak pulse power and the effective area of the fiber.
The overall spectral shape depends on concrete condi-
tions, mainly on the relative position of the central pulse
frequency with respect to the chromatic dispersion pro-
file of the fiber. However, one characteristic trait of the
‘spectrum at this stage is that it has relatively simple
structure, exhibiting several broad frequency bands. In
certain cases, quite flat spectrum without deep gaps can
be achieved. The explosive growth of the spectral width
is however limited. For sufficiently intense pulses, the
total attainable with is rather insensitive to pulse peak
power, similarly as in the bulk media; The spectral with
saturates in the second stage, but the spectrum continues
to evolve.

During the third stage, a complicated fine-scale spec-
tral structure develops. The spectrum gradually evolves
into a conglomerate of a large number of spectrally nar-
row bands. This structure continues to change, with its
characteristic scale becoming finer, while the overall “en
velope” of the spectrum remains almost unchanged. Dur-
ing this process, the coherence is gradually deteriorating.
It is this stage of the white-light generation process that
is most sensitive with respect to fluctuations of the input
pulse and other noise sources. As a result, the detailed
structure of the supercontinuum is practically random,
completely different from shot to shot. After sufficient
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Here, the electric field is a superposition (in the frequency
domain) of the fundamental modal fields: - E(r,t,z) =
3, Cul2)M(r, w)e~t+iB)z This sum runs over a dis-
crete set of angular frequencies w that correspond to
the size T’ of the computational domain in time. fB(w)
is_‘the fundamental mode propagation “constant,” and
“M(r,w) is the normalized vector of the modal elec-
tric field calculated exactly for all w’s. Material chro-
matic dispersion properties needed for that calculation
were modeled by the Sellmeyer formula {12] for the sil-
ica index of refraction with neglected losses. We use

= 2.7 x 1071cm?/W [13] for the nonlinear index,
and parameterize the response function of the stimulated
Raman effect R(7) as in the Intermediate Broadening

propagation length in the fiber, dispersion effects will
eventually take over, and spectral evolution will cease.

Computer simulation have been providing valuable in-
sights into the dynamics of white-light generation. The
computer models based on corrected NLS have been
found in a very good qualitative agreement with experi-
mental observations, and have been used to predict some
of the supercontinuum properties. However, the degree of
quantitative accuracy of this model is actually not quite
certain in the supercontinuum generation regime. So far
the great sensitivity with respect to the initial condition,
together with the noise amplification and limited char-
acterization of both, the input and the output prevent
truly quantitative comparison between theory and exper-
iment. It is therefore important to assess the accuracy of
the model also by other means. One way to do this is by
comparison with a more complete model, and that is the
aim of the next section.

III. ULTRASHORT PULSE PROPAGATION
MODELS

With the detailed derivation provided in the Appendix,
here we only describe the two numerical propagation
models employed in this study. Our reference model
is the z-propagated Unidirectional Pulse Propagation
Equation (UPPE, Ref. [11] shows derivation of the time-
propagated version) specialized to a single (transverse)
mode in a straight silica strand of radius a (see Eq. (25)
in Appendix):

dtM* (r,w). E(r,t, 2)e '“"H’ﬁ(“’)’/ dTR(T)E%(r,t — 7, 2) . (1)

Model [14]. For notational convenience , we include in
R(7) also the instantaneous optical Kerr effect response.

Equation (1) represents a large system of ordinary dif-
ferential equations for the spectral amplitudes C,,(2), and

- various standard adaptive-step ODE can be used to solve

it. The radial integration was implemented as a Gaus-
sian quadrature over radially sampled modal fields. Be-
cause of the frequency dependence of the modal fields,
this integration must be performed for each right-hand-
side evaluation and, consequently, this simulation is an
order of magnitude slower than that based on the stan-
dard corrected Nonlinear Schédinger Equation which we
solve in the spectral domain:
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We term this equation the NLS model in the following
comparison with the reference model. It is essentially
the spectral representation of the corrected Nonlinear
Schrédinger Equation. The only difference is that the
NLS is usually written in the real-pace representation
with the free propagator (dispersion) operator most of-
ten expressed in the form of a series expansion around
the reference frequency. The reader is referred to Ap-
pendix for details. Here, we only point out that the sim-
plification that transforms Eq. (1) into Eq. (2) consists
in replacing the frequency-dependent modal fields by a
single _{rlodal field profile at a chosen reference frequency
wr: M*(r,w) — M*(r,wr). It is best to choose wg to
be the carrier frequency of the incident pulse, of course.
Then, with the radial dependencies of E(r, t, z) fixed this
way, one can perform the radial integration in (1) and
pull out the resulting factor outside of the convolution
integral over time.

A note is in order concerning the accuracy of our ref-
erence model itself. Naturally, although in certain re-
spects better than the NLS model, it is still based on a
number of simplifying assumptions. One of them is the
neglected frequency dependence of the nonlinear index,
which should have a similar, although smaller, effect as
the inclusion of the frequency-dependent modal fields.
Further, the finite response time of the instantaneous
Kerr effect response may affect the detailed structure of
the resulting spectrum. Also, higher order modes may be
excited in the micro-structured fibers and produce extra
broad spectra. Therefore, while our comparison will help
us to gauge the importance of a particular model fea-
ture, it may not tell us much about the absolute model
accuracy.

Finally, it is to be noted that even if the incident field
is pure single (fundamental) mode (in both models), the
nonlinear response contains terms with higher-order an-
gular dependence, and in principle higher-order modes
are always generated. However, due to a large discrep-
ancy between the propagation constants, this effect is
weak.

IV. NUMERICAL SIMULATION COMPARISON

In this section we present comparative numerical sim-
ulation simulations for the two models described above.
Naturally, it is impossible to make generic conclusions
based on numerical calculations made for a few selected
scenarios, but the trends we observe are quite clear, and
allow us to make some useful conclusions.

Let us first discuss briefly the regimes where we found a
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very good agreement between the reference and corrected
NLS models. As expected, for tapers with diameters in
the vicinity of two microns, there is very little difference
between the two. The overall shape of the supercontin-
uum spectra are so similar so that from the point of view
of comparison with current experiments, the corrected
NLS model is fully sufficient. The only differences in the
simulated spectra are deviation in the fine spectral struc-
ture. The latter, however, is to a large extent random,
and irreproducible from shot to shot. It is also sensitive
to noise sources included in simulation and as such only
its statistical properties could be in principle compared
to the experimental observations of multiple single-shot
spectra.

On the other hand, for sub-micron diameter silica
strands, the two models deviate from each other signif-
icantly as we demonstrate on an example in what fol-
lows. This is not to say that the standard corrected NLS
should be automatically replaced by the more complete
reference model for very thin fibers. The appropriate
choice of model will depend on the simulation goals. For
qualitative, exploratory simulations, the corrected NLS
is clearly preferred because it still provides qualitatively
correct picture at much lower computational cost. How-
ever, if one aims at more accurate results, for example
when studying input-pulse and/or fiber optimization for
supercontinuum generation, the more accurate model is
recommended.

Next, we show results for simulation of the 100 fs pulse
centered at 800 nm, carrying peak power of 10 kW, prop-
agating in a short length of a straight silica strand of
radius 0.4um. Figure 1 shows the comparison of the gen-
erated supercontinuum spectra. To make the comparison
easier and the picture more readable, we have smoothed
both spectra (originally normalized to maximum spec-
tral intensity). While the qualitative picture is the same
in both models, there are significant, measurable differ-
ences, too. Most importantly, the corrected NLS model
exhibits a spectrum narrower by tens to more than a
hundred nm (depending on the chosen reference level,
of course). Also the spectral gap between the two main
spectral peaks appear to be pronounced more in the NLS
model. Even more striking differences are observed in the
fine-scale spectral structure shown in the bottom panel.

Naturally, the difference between the two model be-
comes even more pronounced in the real space. Unlike in
the spectral space, where we still have a qualitative simi-
larity (however, let us keep in mind that the comparison
in the logarithmic scale tends to hide differences), the
time-dependent intensity profiles of the simulated pulse
deviate quite quickly. This is shown in Fig. 2 for two
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FIG. 1: Supercontinuum spectra generated in a submicron-
diameter tapered silica strand. Heavy line: corrected NLS,
thin line: reference model. Upper panels shows smoothed
spectra in order to reveal the tendency of the deviation be-
tween the two models more clearly. The lower panel shows
the detail of the non-smoothed spectra revealing completely
different fine-scale structure.

propagation distances. While at z = 1.0cm, one can
make a one-to-one identification of the pulse strictures,
at z = 2.0cm the time-profiles appear to be rather differ-
ent. Of course, because of the difference in the spectral
content, the deviation in the real space will continue to
grow.

V. CONCLUSION

We have compared, from the point of view of numerical
simulation of the ultrashort pulse propagation in tapered
silica waveguides, the widely used corrected Nonlinear
Schrodinger equation (NLS model) and a single-mode
version of the Unidirectional Pulse Propagation Equation
(reference model) with emphasis on sub-micro diameter
silica strands.

While the NLS model always provides qualitatively
" correct answers, the quantitative deviations from the
more accurate reference model become significant in very
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FIG. 2: Intensity as a function of the local pulse time obtained
from the standard and full models. Upper panel shows the
simulated pulses at the propagation distance z = 1. Ocm, while
the lower panel is for z = 2.0cm.

thin silica strands. Although the limited number of sim-
ulated scenarios prevent us from drawing general conclu-
sions about the nature of the deviations between the two
models, we believe that our simulations provide useful
indications about the appropriate usage of the respective
models. Namely, when comparisons with an experiment
are limited to multi-shot spectra, without detailed knowl-
edge about the input pulse as it is usually the case in cur-
rent experiments and simulations, the currently widely
used NLS model remains the method of choice. It pro-
vided qualitatively correct results (as compared to those
obtained from the reference model) in all simulations we
have performed, including the extreme cases of very thin
tapers and high peak powers. The low computational
cost of the NLS model makes it useful for exploratory
runs even in the regimes that require the improved maodel.

Our simulations show that the two models provide
significantly different results for ultrashort pulse prop-
agation in very thin, sub-micron diameter tapered fibers
when the spectral broadening causes significant portion
of the pulse energy to be transferred toward the long-
wavelength end of the spectrum. Namely at long wave-
lengths, the frequency dependence of the modal fields




is the strongest making the notion of the frequency in-
dependent nonlinear coefficient v less accurate. Thus, in
cases when accurate results are sought, for example when
using simulations to optimize the input pulse and/or the
properties of the fiber for supercontinuum generation, the
more accurate model should be used. Moreover, we be-
lieve that in the near future the experimental outputs
in the field of SC generation in tapered and microstruc-
tured fibers will become suitable for detailed comparison
with theory, and thus will make it possible to quantify
the accuracy of various theoretical models.

VI. APPENDIX

For the sake of completeness, as well as for reader’s
convenience, we provide below a detailed derivation of the
propagation equations for femtosecond pulses in straight
silica stands. First we follow a textbook derivation of a
general propagation equation for the pulse optical field
expressed as a superposition of guided modes.

Consider a nonmagnetic, dispersive medium with the
relative permitivity e that only depends on the transverse
coordinates z,y and on the angular frequency w

€=¢€w,z,y), p=po . (3)

Nonlinearity and all other effects that we can’t include
exactly will be lumped in the polarization P in the ma-
terial costitutive relation:

D‘=eoe*E“+P‘. 4)

Let our initial data be given in the z,y,t domain.
Then, the electromagnetic field of a pulse propagating
along the z-axis can be expressed as a superposition of
the (fiber) modal fields

é(m Y, 2, t) mw(z: y) 1ﬁm(w)z-—zwt
R e D ©

Ex 0P + b,

,w.6t€*E—l‘ =
—poHy, -0 H =

The sum runs over all transverse modes and a discrete set
of angular frequencies, the latter corresponding to a fi-
nite, large normalization “volume” T in the time domain.
In what follows, we use the shorthand

1 [HT/2 ) '
dt = — dt 6
/ T J_7s2

for all time-domain integrations unless integration
bounds are shown explicitly. To keep notation short, we
also use the convention that if modal fields are used with-
out showing their explicit arguments, the time-dependent
and propagation phase factors are understood to be ab-
sorbed into modal fields:

5.:m,w = gm’w(m,y)e‘iﬂm(w)b—iut
ﬁm;w = ﬁm,w(ﬂ?;y)eiﬁm(“)z*iwt (7)

The orthogonality relation

/ ZmwxHe

will be used below.

Having fixed the notation we can derivation the z-
propagated Unidirectional Pulse Propagation Equation.
What follows is a textbook method based on the reci-
procity relation. We start from Maxwell’s equations

’Hmwx w]dxdy 20mnNmw (8)

8P +ederE =V x H
—podH =V xE 9)

which we scalar-multiply by the complex conjugate

modal fields, including their time and z phase factors
e+iwt—iﬁm(w)z:

E;;W.atﬁ +eog,‘;l’w.6te «E = f;,,w.V x H
~poHt o O H =T,V xE (10)

Let us re-arrange both right-hand sides as:

VB x & )+ VX E,
V.[E x H:, )+ E[V x Hy ) (11)

and use Maxwell’s equations for the conjugate modes that appear in the last terms:

6¢P + Eo

-Or€ * E =
—P‘OHm,w'at =

V.[H x &) - poH.0H,,
VB x Tt )+ eoBBe x €5y (12)

Next, subtract the two equations and integrate over the whole zyt domain, supposing that fields vanish at infinity:

/ &r, -0 Pdzdydt = 8, / zZ[H x &, ,)dzdydt ~ &, / Z|E x H, ,)dzdydt (13)

Finally, keeping in mind the implicit z,t dependence of the modal field, insert the modal expansion (5) and use the
orthogonality relation (8) to obtain the evolution equation for the expansion coefficients.

iw
0, Am w =

2 m,w

/ e~ ifmWstivtde (5 ) B(z,y,t) dedydt (14)




Next we specialize the propagation equation for a silica strand with a diameter 2a. Neglecting the nonlinear interac-
tions outside of the taper, as well as all higher-order modes, the propagation equation reads

. a 2m
8, Au(z) = % /0 rdr /0 d¢ / dt€%(r, ¢, t,2).B(r, b, t, 2)

where the fundamental mode field is
& Eq(r,w) cos(¢)
<€¢) = (&,(r, w) sin(¢) ) exp(—iwt +if(w)z) (16)
£, E.(r,w) cos(9)

In silica, for the intensities typically encountered in
fibers, the polarization

P('f‘, ¢9t) Z) = €9 AX(Ta ¢7 t: z) E(T, ¢, t, Z)

is expressed through the local change of the susceptibility

17)

Ax(r, 6,1, 2) = 2 /0 " 4B r, ¢t — 7, R(7) (18)

where R(7) stands for the normalized Kerr/Raman re-
sponse memory function. Since we neglect coupling to
other than fundamental modes, we need to consider only
the axially symmetric component of Ax(r, ¢,t,z) which

'Lwﬂ'Eo

0. A,

For numerical solver implementation it is convenient
to use the normalized modal fields. Together with the
corresponding modal propagation constant, the modal
fields are pre-calculated exactly for a range of angular
frequencies w:

Bw) , ./\71“,(7‘) = gw("")/\/_ﬁ;-

Similarly, the expansion coefficients are replaced by the
normalized ones:

(22)

Cu(2) = Au(2)V/No (23)
|
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This is our reference model. At each integration step,

/ dr/dte“'""t B2 % (1) E(r, t, 2) Ax(r, t, 2)

(15)
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0 e=r,$,z
(19)
We have used the fact that E2(r, ¢,t — 7, 2) is a super-
position of fundamental modes (at different frequencies)
and thus its angular dependence is proportional to ei-
ther cos(¢)? or sin(¢)?2, depending on the component c.
Therefore, its ¢-independent component is one half.
Thus, in the single-mode approximation, the polariza-
tion azimutal dependence is the same as of the one of the
fundamental mode:

P(r,d,t,2) = €0 Bx(r,t,2) Y, Au(2)€u(r ¢,t,2) (20)

When we insert this expression in Eq. (15), the angular
integration will yield

(21)

and the fields expansion then reads

B(rt,2) = 3 Cul@)Mu (et (24)

In the above formulas, vectors are expressed in the
cylindrical coordinates and the angular dependencies are
omitted. With this normalization, the propagation equa-
tion reads

dteti =) Ag* (1) E(r,t, 2) Ax(r t, 2) (25)

the radial integration is performed using Gaussian or Lo-




bato’s numerical scheme. Thus, the evolving pulse field
must be sampled at multiple radial locations. Just eight
samples turn out to be sufficient, because the radial field
profiles are smooth. Nevertheless, the radial integration
makes this method order of magnitude slower than the
traditional one-dimensional corrected NLS which we de-
rive next.

The additional approximation we need to make to
transform the above propagation equation into NLS-type
equation is that of frequency independent modal fields.
Note, that the modal fields enter the nonlinear coupling

term at four generally different frequencies. However,
we replace M2 (r) — Mp(r) for every w, with Q stand-
ing for a chosen reference angular frequency. Then, the’
radial dependency can be isolated from the field’s time
dependence. Factoring out the nonlinear coefficient

TEQNETL
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leads to the corrected NLS written in the spectral domain

, . |
8,Cu(2) = iwy / dtetiwt-1FWz Bt 2) / drR(MIE(E—T1,2) , E(t,2) = Cu(z)e™™#E)  (27)
0 w

This we refer to as the corrected NLS and use in our
comparative numerical simulations. To show its equiva-
lence with the usual form written in the real-space do-
main, one needs to make a few further steps. First,
the expansion coefficient are redefined to absorb the free
propagation phase factors and we switch to the envelope
representation:

E(t, z) = A(t, z)e~ "0t = g~iwot Z G (2)eiw—velt
w
(28)
Second, we transform the evolution equation into real-

space domain. This is done by applying 3 e~ iw=wo)t
to each term in the equation. In the process, B(w) is

B Al =3 i
n=2

Note that wq is an “arbitrary” parameter introduced in
the derivation, and recall that the nonlinear coefficient
~ also contains similar “degree of freedom,” namely Q.
Naturally, both are usually chosen equal to the central
frequency of the initial pulse.

Thus, equation (27) is equivalent to the standard evo-

I

interpreted in terms of Taylor expansion around wg, and
its argument is replaced by w — wp + ©8;. Then the
resulting equation reads

8, Alt, z) = iB(wo +zat).A(t 2) + iy(wo + 16;) AR * |A|2)

29
Here, B(wo+18;) is a shorthand for a differential operator
formed from the Taylor expansion of 8(w). Finally, to get
rid of the first two terms in the B-expansion, we factor
out e~*#(w0)z and change to the coordinate frame moving
with the group velocity vy = 1/(6.,8(w)) evaluated at
wo: A(t — 2/vg, 2) = A(t, 2)e"*#0)% which gives us the
corrected NLS equation for the pulse envelope

S 62 2B (15,0 At 2) + oy (1 + 5 00) AR+ AP - (30)

lution equation. However, the latter doesn’t offer any
advantage from the numerical point of view. Namely, it
requires to approximate the dispersion relation 8(w) by
a polynomial, and the higher order derivatives are best
treated in the spectral domain anyway. It is therefore
simpler to use equation (27).
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Supercontinuum generation in sub-micron diameter tapered fibers
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Supercontinuum (SC) generation in tapered fibers with taper diameters in the
sub-micron range is investigated numerically. Such thin fibers exhibit two
zero dispersion wavelengths (ZDWs) in the visible range, and we propose and
analyze two schemes which take advantage of the second ZDW and promise

improved SC generation.
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Tapered! and microstructured®?® optical fibers are
promising media for supercontinuum (SC) generation,
as wide optical spectra can be generated at relatively
low powers in short lengths of these fibers.1#6 How-
ever, the quality of the generated white light remains
a problem.”8 Ideally, a SC source should provide a wide,
flat spectrum, without fine-scale structures or spectral
gaps. For generation of frequency combs®!? the spec-
trum must span a whole octave of frequencies, and for
pulse compression and shaping, the coherence properties
and the phase structure of the supercontinua are impor-
tant.® Unfortunately, tapered fibers and microstructured
fibers normally produce continua that lack most of these
desired properties. Choosing the optimal fiber and opti-
mization of the input pulse are therefore important.®!!

One of the attractive features of the tapered silica fiber
is that it exhibits zero dispersion wavelength (ZDW) in
the visible region for diameters around 2 um. Experi-
ments and computer simulations have therefore concen-
trated on tapers with dimensions in this range. The aim
of this Letter is to demonstrate, through computer sim-
ulation, that tapered fibers with sub-micron diameters
have properties that are well suited for the generation of
high-quality SC spectra, in particular, they exhibit two
ZDWs. This feature, together with smaller effective ar-
eas, can be utilized in optimizing the tapered fiber for
relatively smooth SC spectra . Supercontinuum gener-

. a +
8.C,(2) = zwvzreo / rdr M* (r,w)e Pz /
0 -

o

Here E(r,t,2) = [dwC,(2)M(r,w)e~t+iB()z is the
electric field (with the polar-angle dependence sup-
pressed), B(w) is the frequency-dependent propagation
constant, and M(r,w) is the normalized vector modal
field at angular frequency w. These quantities are cal-
culated exactly for a silica strand over a sufficiently

ation around the second ZDW has been investigated in
the infra-red region. We show that the quality of the
SC generated from a pulse launched in the vicinity of the
second ZDW in the visible frequency region is superior
to that obtained from a thicker fiber utilizing the first
ZDW. Smooth spectra spanning almost an octave over
the visible region without deep gaps can be obtained in
much shorter lengths of the tapered fiber.

Another potentially useful regime is realized by plac-
ing the input pulse spectrum symmetrically between two
ZDWs. The symmetric chromatic dispersion “landscape”
then gives rise to a spectrum with the energy concen-
trated symmetrically at the extreme low and high fre-
quencies. Such spectra can be generated at low energies
and thus should be usable for frequency combs?®.

In the present qualitative study, we concentrate on the
tapered section of the fiber only, and model it as a sim-
ple silica strand of radius a. To obtain an equation that
describes the evolution of the pulse along the strand'‘s
z-axis, one can start from a textbook formula for mode
excitation!? with the nonlinear polarization in the role
of the “source.” We neglect all modes except the funda-
mental one, and retain only the symmetric component of
the nonlinear response. After integrating out the (funda-
mental mode) polar-angle dependence, we arrive at the
following propagation equation written in the frequency
domain

o0 00 )
dtﬁ(r, t, z)elt / drnbﬁgR(T)E2 (rt—m12). (1)
0

r

wide range of frequencies. We use a Sellmeier for-
mula!?® for the silica index of refraction, nonlinear index
ng = 2.7 x 10~ *6cm?/W .14 R(r) stands for the response
function of the stimulated Raman effect (parameterized
as in the Intermediate Broadening Model of Ref. [14])
that includes also the instantaneous Kerr effect contri-




bution. These coupled equations for the spectral ampli-
tudes C,, (normalized to unit power) are solved using a
standard ODE solver routine.

In this work we use the approximation that the ex-
act frequency-dependent modal fields can be replaced
by those evaluated at the center frequency of the input
pulse M(r,w) — M(r,wr). With this simplification, our
model reduces essentially to the widely used corrected
Nonlinear Schrédinger Equation,!3-17 the only difference
being that the nonlinear coefficient « is calculated from
the vector modal field, i.e. not from the “scalar” effective
area. It will be shown in a separate publication that for
the purpose of qualitative studies like the present one,
this model is fully sufficient. Note however, that in the
very thin tapers there are certain regimes in which use of
the full equation with spectrally resolved modal fields is
necessary to obtain quantitatively correct results.

When the SC is generated in a tapered or a mi-
crostructured fiber there are three distinct stages of
propagation;®1617 In the first stage, self-phase modu-
lation (SPM) dominates the propagation and broadens
the spectrum in a nearly symmetrical way. In the second
stage at larger distances, explosive spectral broadening
occurs and the spectral width of the SC generation satu-
rates. In the third stage, fine-scale structures!®18 develop
in the spectrum and coherence is gradually lost with in-
creasing propagation distance.”®16 To obtain wide and
coherent spectra, it is therefore necessary to choose an
optimal propagation length prior to the third propaga-
tion stage,® and we have chosen the propagation lengths
appropriately here.

To proceed we compare SC generation in two tapered
fibers, the first being a “standard,” 2.4um diameter ta-
per that has ZDW located close to A = 780nm, and the
second a thin taper with a radius of just a = 0.325um.
The GVD of these two tapers is depicted in Fig. 1. Note
that the first (and only) ZDW of the thick fiber nearly
coincides with the second ZDW of the thin fiber, the sec-
ond ZDW vanishing as the taper diameter is increased.
A 50fs duration, 6kW peak power pulse is launched at
A = 780nm in both fibers. We use a hyperbolic secant,
unchirped pulse for this comparative simulations. Natu-
rally, the real input pulse will be more complex than that,
but for a more realistic comparison of SC generation in
the two tapers, one should include the input transient
taper region and compare results for inputs optimized for
each of the fibers. Such an optimization should include
shaping of the pulse and is much more complex task not
addressed in this work.

Figure 2 compares the “optimal” spectra obtained for
the two fibers, where the optimization consists of choos-
ing the interaction length® just after the spectral width
saturates and before it develops fine-scale structure that
would indicate gradual loss of coherence. Further propa-
gation in the taper would not increase the useful spectral
width, but would degrade the quality of the spectra.
The key observation from Fig. 2 is that the spectrum gen-
erated in the thicker silica taper is narrower and exhibits

\! . !
) ]
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Fig. 1. Group velocity dispersion of the fundamen-
tal mode in silica strands of radius a = 0.325pm and
a=12pm.
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Fig. 2. Supercontinuum spectra generated in two dif-
ferent tapered fibers. Full line: 0.325um radius taper,
propagation distance z = lem. Dashed line: 1.2um ra- -
dius taper, propagation distance z = 20cm. Dotted line
shows the input spectrum. '

much more of the unwanted spectral structure (dashed
line), in comparison to the spectrum from the thinner
fiber (solid line). In particular, for the thicker taper the
spectral intensity variations are deeper and the gaps in
the spectrum are wider than in the spectrum obtained
from the thin strand. The greater width and better qual-
ity of the SC obtained from the thinner strand is most
likely mainly due to the effectively stronger nonlinearity
given by the smaller radius. The nonlinear length is sig-
nificantly shorter and the spectrum is generated faster,
which gives less time to develop the fine-scale structure
and spectral gaps.

The computed SC spectrum from the thin taper in
Fig. 2 doesn’t quite span a whole octave, but it is con-
ceivable that the result can be improved with a suitably
shaped input pulse. Our preliminary attempts to opti-
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Fig. 3. Supercontinuum generation from a pulse launched
in the middle between two zero-dispersion wavelengths
in a a = 0.25um radius taper after propagating for z =
lem. Further propagation leads to flattening of the high-
and low-frequency segments of the spectrum, but fine-
scale spectral undulations and structure starts to develop
quickly. -

mize the input pulse by tuning the chirp only showed
that while this can increase the spectral width, it also
results in a spectrum less flat with deeper gaps. Thus,
an efficient optimization will need to include more com-
plex pulse shaping. As pointed out the simulation then
must include the whole propagation path of the pulse
with changing nonlinear interactions in the tapered re-
gions.

The result we want to emphasize is that our compara-
tive simulations strongly suggest that sub-micron diam-
eter silica strands will most likely be better sources of
SC spectra spanning the whole visible region than the
d =~ 2pm diameter fibers used in number of recent exper-
iments.

Another possibility for visible SC generation in sub-
micron silica strands is demonstrated in Fig. 3. The ini-
tial pulse at A = 520nm is launched in the middle between
the two ZDWs of a a = 0.30um radius silica strand. The
dispersion profile is roughly symmetric around this cen-
tral wavelength, and the value of the dispersion over a
wide frequency range is still quite small. The result is a
highly symmetric spectrum with most of its energy con-
centrated at low and high frequencies. The generated
SC spectrum spans a whole frequency octave and should
thus be suitable for frequency-comb generation. An in-
teresting feature is that the prominent blue and red spec-
tral bands that are roughly mirror images of each other.
This creates essentially a “two-color” continuum, and the
pulse in the real-space domain is essentially a superposi-
tion of two spectrally wide sub-pulses with their central
wavelengths split from the pump wavelength by a few
hundreds of nm. Further propagation will thus result in
spatial separation and a pair of mutually coherent, spa-
tially separated pulses will arise.

In conclusion, we have presented numerical simulation
results simulating SC generation in the visible range us-
ing sub-micron tapered silica fibers which exhibit two
ZDWs. Our numerical simulations indicate that such
thin silica strands, though currently difficult to manufac-
ture, offer improvements in the quality of SC generated
spectra, and they should be even more attractive white-
light sources than the thicker tapered fibers with a single
ZDW in the visible region.
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